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Franck-Condon factor distributions for bound-to-continuum transitions of 
one-dimensional vibrational states are calculated by a) using numerical integra- 
tion, b) employing a finite number of square integrable harmonic oscillator 
functions. The methods are generally applicable to any kind of bound or repul- 
sive potential involved. Results are presented and compared to model potential 
calculations previously reported by Krtiger [1]. 
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1. Introduction 

The aim of this paper is to show that it is possible to compute accurate Franck-  
Condon factor distributions employing well known methods generally used to 
solve one-dimensional vibrational problems involving bound or scattering states. 
This work is an extension of procedures employed in this laboratory [2, 3] and 
presents an alternative to a previous work of Kriiger [1], who calculated bound-to- 
continuum Franck-Condon matrix elements employing uniform semiclassical 
techniques. We used two completely different methods and compared our results 
to those of Krfiger [1]. The first makes use of numerical integration techniques, 
while the second constructs the correct Franck-Condon factor distribution from a 
given set of individual Franck-Condon factors which can be easily computed by 
standard bound state vibration programs involving any kind of basis functions, if 
they are capable of representing the correct potential energy for arbitrary inter- 
nuclear distances. 
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2. Method 1 

The bound as well as the repulsive system are treated numerically. This is done by 
solving numerically the one-dimensional differential equation 

d2~(R) 
d R  ~ - 2 ~ ( V ( n )  - E ) . ~ , ( R )  (1) 

using a difference formula according to Numerov [4]. The bound system, which 
involves the boundary conditions 

# ( R = R 1 ) = 0  and # ( R , = R 1  + n . h ) = 0  (2) 

(with h = (R,~ - R O / n ,  n = number of grid points) is treated here by a method 
developed by Cooley [5]. For this purpose the range from Rz = 4.8 ao to R,  = 10.0 
ao is divided into 2000 equidistant parts with h = 2.6.10 -3 ao. As bound potential 
we used a Morse potential 

V ( R )  = D . ( I  - e -~'~-1))2 (3) 

with y = R / R m  and in order to compare our results with those given by Kriiger we 
chose the same set of  potential parameters (a = 14, Rm = 3 A = 5.6692569 a0, 
D = 0.061567 a.u.). Our numerically calculated vibrational energy for the v = 0 
state is 273.61456 cm -1, which differs by 5. l0 -5 cm -~ from the exact result. The 
continuum functions for the repulsive potential curve 

V ( R )  = V o . e  - ~  (4) 

(with Vo = 1.105 eV while c~ and Rm are the same as for the Morse potential) 
satisfy the boundary conditions 

~bc(R = R1) = 0 and ~bC(R2 = R1 + h)  = A'e(V(R2)-E)'(R2-RT ) (5) 

with Rr being the turning point. The resulting differential equation can be solved 
using the analogous difference formula as for the bound system which is a well 
known procedure in scattering theory [6, 7]. Since we used the same grid points for 
this system as for the bound system the Franck-Condon factors (FCF) 

FCF = I .f~["q,C(R).#(R) dR [ ~ (6) 

can be calculated directly via Simpson's numerical integration technique. 

3. Method 2 

It  has already been demonstrated by Hazi and Taylor [8] that a vibration- 
Hamiltonian having a continuous spectrum can be treated by a finite number of 
square integrable functions. Here we show that it is equally possible to handle 
bound-continuum transitions by bound state methods [3]. One of the standard 
methods for constructing the vibration-Hamiltonian is used. In the first step the 
method of Harris et al. [9] is employed and R (the operator for the position co- 
ordinate) defined as R = R'  - R0 (R0 = reference-point) is diagonalized in the 
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basis of  harmonic oscillator functions yielding eigenvalues R~. In the limit of  a com- 
plete set V(R,/D) (D being a scaling parameter here chosen to be optimized for the 
bound state) is diagonal and the matrix V'(R/D) can be obtained by backtrans- 
formation 

V'(R/D) = C. V(R~/D). C -  1 (C being the eigenvector matrix of R) (7) 

(This gives a correct representation of the potential energy for small and large 
values of  R in contrast to an expansion of V in powers of R, which is not advisable 
in this case because such power series lead to artificial oscillations for larger values 
of  R.) The errors inherent to such a procedure have been described elsewhere [9]. 
The Hamiltonian is then given by 

D 2 d 2 
n = 2-~ dR ----~ + V(R/D) (8) 

The diagonalization of the bound state Hamiltonian yields a set of  approximate 
variational bound state energies and eigenvectors (the calculated frequency for the 
lowest level is 273.615 cm -1 which agrees with the exact result to the decimals 
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Fig. 1. Stieltjes histogram and Franck-Condon factor distribution according to formula (11) for 
calculations including 120 basis functions. In Figs. 1-3 the oscillator strength distribution is 
given in a dimensionless form by multiplyingf(E) 2, with h2/l~R~ as it has been done in Kriiger's 
paper [1] 
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shown) whereas the H-operator for the continuous states yields a set of discrete 
pseudostate energies and corresponding wavefunctions. These are known to be 
good approximations to the exact continuum wavefunctions over a large range of 
RID values depending on the number of basisfunctions [8]. To get an energy 
dependent Franck-Condon factor distribution two techniques are employed. The 
first is analogous to one of the methods used in photoionisation cross-section 
calculations [10] and provides a histogram approximation to the correct distribu- 
tion. But in contrast to the so-called Stieltjes imaging method described in [10] we 
assume here that the pseudostate energies and the Franck-Condon factors already 
yield an approximate discrete representation of the cumulative Franck-Condon 
factor distribution 

F(e) = f(Y) d~' (9) 

from which the Franck-Condon factor distribution is obtained by differentiation in 
the Stieltjes sense. In the theory of Stieltjes imaging [8] the histogram is computed 

10 -t', 

lO-S.. 

10 -6 . 

10-% 

I I 

I 
II 
lj 

II 
II 
II 

! 

0.1 

I I I1 ! 
I I I 

it nt I 

o12 0'.3 Ec,v) 
Fig. 2. Stieltjes histogram and Franck-Condon factor distribution according to formula (11) 
including 10 basis functions. The correct Franck-Condon factor distribution is given by the 
dotted line 
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from a small number of  converged moments of  the cumulative oscillator strength 
distribution given in an approximate discrete form by the computed pseudoenergies 
and oscillator strengths. Generally this technique has the effect of  smoothing the 
input data, as can be seen from the used Stieltjes derivative formula 

f(~) = f(e~) + f +,(e~ + ~) 2(e,+z - e,) e~ < e < e,+l (10) 

More structure can be retained by using the interpolation formula 

_ ( 1 1 )  
8 / +  1 - -  8i_  1 

which should give a pointwise approximation to f(e) in the limit of  great pseudo- 
state energy density. A justification of this formula will be given in a subsequent 
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Fig. 3. Franck-Condon factor distribution calculated by numerical integration (full line) com- 
pared to the results of Kri.iger, adapted from Fig. 2 of Ref. [1]. The marked points indicate the 
Franck-Condon factor distribution calculated by Method 2 
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E(eV) 
(Ref. [1]) Method 1 Method 2 

Max. 1 0.090 0.095 0.098 
Min. 2 0.130 0.128 0.124 
Max. 2 0.147 0.145 0.146 
Min. 3 0.172 0.168 0.168 
Max. 3 0.187 0.185 0.183 
Min. 4 0.211 0.206 0.206 
Max. 4 0.227 0.223 0.223 
Min. 5 0.249 0.243 0.247 
Max. 5 0.265 0.260 0.258 
Min. 6 0.280 0.282 
Max. 6 0.298 0.299 

Table 1. Location of the minima and maxima 
in the Franck-Condon  factor distribution 
with respect to the energy. A comparison of 
the results calculated by Method 1 and 
Method 2 presented in this paper with those 
of Krihger as taken from Fig. 2 of Ref. [1 ] 

publication. 1 Whereas the histogram approximation yields an envelope for the 
correct distribution (see Fig. 1) even if the number of basisfunctions is reduced to 
10, the interpolation formula yields in the case that the density of the pseudostates 
is greater than the expected variations in the Franck-Condon factor distribution a 
correct point~ise image of the exact Franck-Condon factor distribution. If  this 
condition is not met it is advisable to use the histogram approximation because 
otherwise the position and depth of the occurring minima is completely unreliable 
(see Fig. 2). 

4. Discussion 

The results of both methods are in good agreement with Kriiger's "exact" values 
(Fig. 3). The overall structure of the Franck-Condon factor distribution is very 
similar with respect to the location of the maxima and minima (Table 1). But we 
find a difference concerning the fall-off of the maxima to the high energy side, which 
is not as strong in the methods presented as those in the approximation derived by 
Kriiger [1 ]. The methods described here are flexible enough to be applicable to any 
kind of potential involved and thus provide a useful tool for the calculation of 
Franck-Condon factor distributions. Further it is easy to include the electronic 
transition moment, which might exhibit a strong variation with internuclear 
distance, as it has already been done for transitions between bound states [2, 11 ]. 
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1 Formula (11) has been used previously by G. W. F. Drake, Astrophys. J. 184, 145 (1973) 
in connection with the calculation of spontaneous bound-free transition of the 2p 2 ape state of 
n - ,  
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